Lab 9 Design a Simple 8-Bit ALU

Calvin Reese cjreese@fortlewis.edu

12/3/2021

1 Introduction

ALU stands for Arithmetic Logic Unit. This device is designed to add and subtract parallel bit sequences. ALUs are required for most circuits and in of themselves, basic calculators.

2 Materials and Methods

The tutorial for making this example in ElectricVLSI are found in /urlhttp://www.yilectronics.com/Courses/EN

3 Results

ALU Schematic

Verify OR Gate

Subtraction Demonstration

ALU Layout

208	
Running DRC with area bit on, extension bit on, Mosis bit	
Checking again hierarchy (0.0 secs)	
Found 88 networks	
Checking cell (Shit ALU(Jav))	
No arrore/warnings found	
No creation within a stand (table 2.20 stand)	
o errors and o warnings iound (cook 0.205 secs)	
209	
Running DRC with area bit on, extension bit on, Mosis bit	
Checking again hierarchy (0.0 secs)	
Found 88 networks	
0 errors and 0 warnings found (took 0.002 secs)	
210	
Checking Wells and Substrates in 'ENGR338:Sbit_ALU{lay}'	
Geometry collection found 2704 well pieces, took 0.005 secs	
Geometry analysis used 12 threads and took 0.009 secs	
NetValues propagation took 0.001 secs	
Checking short circuits in 118 well contacts	
Additional analysis took 0.0 secs	
FOUND 16 WELL ERRORS (took 0.016 secs)	
FRC Well Check found 16 errors, 0 warnings!	
Type > and < to step through errors, or open the FRBORS view in the explorer	
Wiererchical NCC every call in the design: call 'Shit MIU(schl', call 'Shit MIU);	
Comparing, ENCESSING(ach) with ENCESSING(act)	
exports match topologies match sizes not sheeled in 0.001 seconds	
Companies, ENCDODO, Shis AND(ash) wish, ENCDODO, Shis AND(law)	
comparing: Engrasse:obic_Anb(sen) with: Engrasse:obic_Anb(idy)	
exports match, topologies match, sizes not checked in 0.0 seconds.	
comparing: ENGR338:OR(SCN) With: ENGR338:OR(1ay)	
exports match, topologies match, sizes not checked in 0.0 seconds.	
Comparing: ENGR338:8bit_OR(sch) with: ENGR338:8bit_OR(lay)	
exports match, topologies match, sizes not checked in 0.001 seconds.	
Comparing: ENGR338:Inverter_short{sch} with: ENGR338:Inverter_short{lay}	
exports match, topologies match, sizes not checked in 0.0 seconds.	
Comparing: ENGR338:8bit_inverter{sch} with: ENGR338:8bit_inverter{lay}	
exports match, topologies match, sizes not checked in 0.001 seconds.	
Comparing: ENGR338:FA_Highspeed(sch) with: ENGR338:FA_Highspeed(lay)	
exports match, topologies match, sizes not checked in 0.002 seconds.	
Comparing: ENGR338:FA_Highspeed[0-7](sch) with: ENGR338:FA_Highspeed[0-7](lay)	
exports match, topologies match, sizes not checked in 0.0 seconds.	
Comparing: ENGR338: Inverter 20 10(sch) with: ENGR338: Inverter 20 10(lav)	
exports match, topologies match, sizes not checked in 0.001 seconds.	
Comparing: ENGR338:MUX 2 1 Sbit(sch) with: ENGR338:MUX 2 1 Sbit(lav)	
exports match, topologies match, sizes not checked in 0.002 seconds	
Comparing: ENGB338:8bit MIU(sch) with: ENGB338:8bit MIU(lav)	
comparing, Emonsol, obic_REC(sci) with, EnGROSSCIDIC_REC(1dy)	
exports match, topologies match, sizes not checked in 0.002 Seconds.	
pummary for all cells: exports match, topologies match, sizes not checked	
NUL COMMANA COMPLETEA IN: 0.014 SECONAS.	
<	>

Error Check

4 Discussion

The functionality of the ALU works great, however the DRC has 16 errors because the inverters with the AND and OR gates have 1 error. This error is "No P-Well contact in this area" on the NMOS side. I have tried everything to try and resolve this error, but no matter how much more pure P-Well-Nodes I add or how many times I rebuild it, I get the same error. Other than that one error, everything else worked great and the error messages that were not included in the previous labs were resolved here