# State and Output Equations

Calvin Reese cjreese@fortlewis.edu

3/1/22

## 1 Introduction

This HW, we worked on designing and testing state and output equations.

### 2 Materials and Methods

The tutorial for making these examples are in http://www.yilectronics.com/Courses/CE433/s2022/lectures/week5\_sequentialCircuit/week5\_sequentialCircuit.html

### 3 Results

#### 3.1 Task 2

Sequence Detector Code

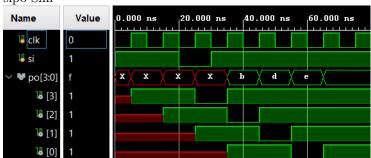
```
23 module sequenceDetector(y,q1,q2,x,clk,clr);
24 input x,clk,clr;
25 output reg y;
26 output reg q1=0;
27 output reg q2=0;
28
29 always @(posedge clk)
30
       if(clr==1)
31
       begin
            q1<=1'b0;
            q2<=1'b0;
       else
36
       begin
37
            q1<=\sim(q1^q2)*x+(\sim x*\sim q1*q2);
38
            q2 <= (x*q1*\sim q2) + (\sim q1*q2);
39
            y <= (x*q1*q2);
40
41 endmodule
42
43 module sequenceDetector_tb;
44 wire y,q1,q2;
45 reg x=0;
46 reg clk=0;
47 reg clr=1;
48 integer i;
49
50 sequenceDetector UUT(.y(y),.q1(q1),.q2(q2),.x(x),.clk(clk),.clr(clr));
51 initial begin
       for(i=0;i<20;i=i+1)begin
            clk=~clk;
54
            if(i>5&i<10)begin
                clr=0;
                x=1;
            end
58
            else if(i==11) x=0;
59
            else if(i==12) x=1;
60
            else x=0;
61
            #10;
62
       end
63 end
64 endmodule
```

Sequence Detector Sim

| Name               | Value    | 0.000 | ns | 20.000 | ns | 40.000 | ns | 60.000 | ns | 80.000 | ns | 100.00 | 0 ns | 120.00 | 0 ns | 140.00 | 0 ns |
|--------------------|----------|-------|----|--------|----|--------|----|--------|----|--------|----|--------|------|--------|------|--------|------|
| 1 <b>8</b> y       | 0        |       |    |        |    |        |    |        |    |        |    |        |      |        |      |        |      |
| ¼ q1               | 1        |       |    |        |    |        |    |        |    |        |    |        |      |        |      |        |      |
| ¼ q2               | 0        |       |    |        |    |        |    |        |    |        |    |        |      |        |      |        |      |
| ₩ x                | 1        |       |    |        |    |        |    |        |    |        |    |        |      |        |      |        |      |
| ₩ clk              | 1        |       |    |        |    |        |    |        |    |        |    |        |      |        |      |        |      |
| ₩ clr              | 0        |       |    |        |    |        |    |        |    |        |    |        |      |        |      |        |      |
| > <b>W</b> i[31:0] | 00000006 | 0     | 0  | 0      | 0  | 0      | 0  | 0      | 0  | 0      | 0  | 0      | 0    | 0      | 0    | 0      | (0)  |

#### 3.2 Task 3

```
siso Code
21 module siso(clk,si,so);
22 input clk,si;
23 output so;
24 reg [3:0] q=0;
25 always @(posedge clk)
26 begin
        q[3]<=si;
        q[2]<=q[3];
q[1]<=q[2];
q[0]<=q[1];</pre>
28
29
30
31 end
32 assign so=q[0];
33 endmodule
34
35 module siso_tb;
36 reg clk;
37 reg si;
38 wire so;
39 siso U(.clk(clk),.si(si),.so(so));
40 initial begin
41 clk=0;
42 si=1;
43 #10
44 si=0;
45 #10
46 si=0;
47 #10
48 si=1;
49 end
50 always #5 clk=~clk;
51 endmodule
```


#### siso Sim

| Name             | Value | 0.000 ns 20.000 ns 40.000 ns 60. | 000 ns |
|------------------|-------|----------------------------------|--------|
| <sup>™</sup> clk | 0     |                                  |        |
| ₩ si             | 1     |                                  |        |
| ₩ so             | 1     |                                  |        |

#### sipo Code

```
55 module sipo(clk,si,po);
56 input clk,si;
57 output [3:0] po;
58 reg [3:0] tmp;
59 always @(posedge clk)
60 begin
61
       tmp={si,tmp[3:1]};
62 end
63 assign po=tmp;
64 endmodule
65
66 module sipo_tb;
67 reg clk;
68 reg si;
69 wire [3:0] po;
70 sipo U(.clk(clk),.si(si),.po(po));
71 initial begin
72 clk=0;
73 si=1;
74 #10
75 si=1;
76 #10
77 si=0;
78 #10
79 si=1;
80 end
81 always #5 clk=~clk;
82 endmodule
```

#### sipo Sim



#### piso Code

```
86 module piso(clk,pi,load,so);
87 input clk, load;
88 input [3:0] pi;
89 output reg so;
90 reg [3:0] tmp;
91 always @(posedge clk)
92 begin
93
       if(load) tmp<=pi;</pre>
94
       else
95
        begin
96
            so<=tmp[0];</pre>
97
            tmp<={1'b0,tmp[3:1]};</pre>
98
        end
99 end
.00 assign po=tmp;
.01 endmodule
.02
.03 module piso_tb;
.04 reg clk;
.05 reg [3:0] pi=4'b1101;
.06 wire so;
.07 reg load;
.08 piso U(.clk(clk),.pi(pi),.so(so),.load(load));
.09 initial begin
10
        clk=0;
11
        load=1;
12
       #10;
13
       load=0;
.14 end
.15 always #5 clk=~clk;
.16 endmodule
```

#### piso Sim

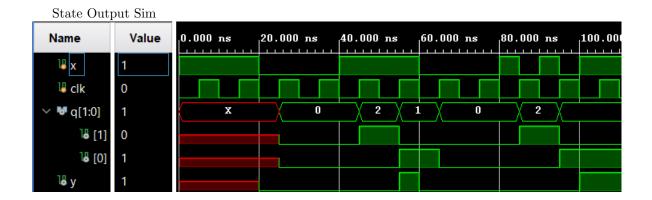


```
pipo Code
120 module pipo(clk,pi,po);
121 input clk;
122 input [3:0] pi;
123 output reg [3:0] po;
124 always @(posedge clk)
125 begin
126
       po=pi;
127 end
128 endmodule
129
130 module pipo_tb;
131 reg clk;
132 reg [3:0] pi=4'b1101;
133 wire [3:0] po;
134 pipo U(.clk(clk),.pi(pi),.po(po));
135 initial begin
136
        clk=0;
137
        #10;
138 end
139 always #5 clk=~clk;
140 endmodule
```

### pipo Sim

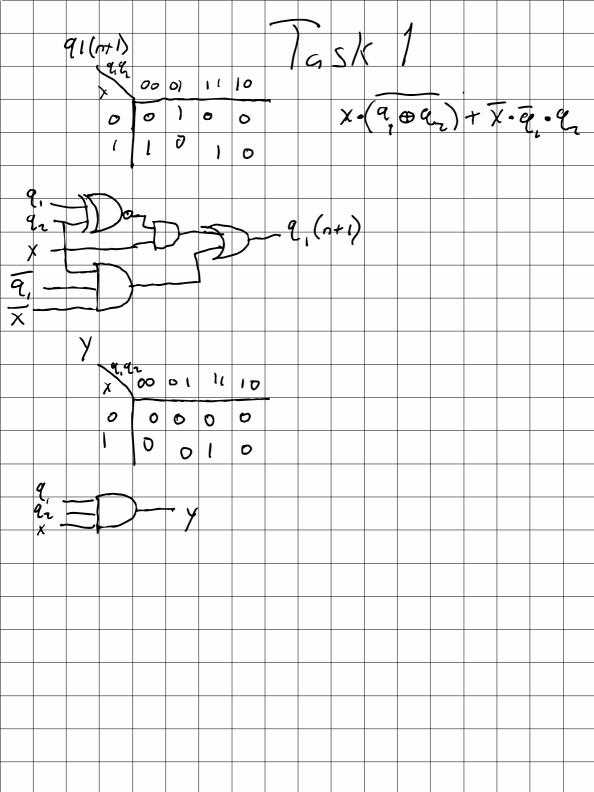


#### 3.3 Task 4


```
Counter Code
23 module Counter(x,clk,q,y);
24 input x,clk;
25
26 output reg [1:0] q;
27 output reg y;
28
29 initial begin
30 q<=1'b00;
31 y<=1'b0;
32 end
33 always @(negedge clk)
34 if (x==1) {y,q} <= q+1'b1;
35 endmodule
36
37 module Counter_tb;
38 reg x,clk;
39 wire [1:0] q;
40 wire y;
41 Counter U(.clk(clk),.x(x),.q(q),.y(y));
42 initial begin
43 clk<=1'b0;
44 x<=1'b1;
45 end
46 always #5 clk=~clk;
47 endmodule</pre>
```

#### Counter Sim 20.000 ns 0.000 ns 40.000 ns 60.000 ns Name Value \_\_\_\_ ₩ x <mark></mark> clk ∨ **₩** q[1:0] 1 2 3 0 1 2 3 16 [1] 0 **1**6 [0]

#### 3.4 Task 5


State Output Code

```
23 module stateOutput(clk,q,x,z);
24 input x,clk;
25 utput z;
26 output reg [1:0] q;
27 assign z=q[0]&x;
28 always @(posedge clk)
29 begin
30
       q[0] <= q[0] &x |q[1] &x;
       q[1]<=~q[0]&x&~q[1];
32 end
33 endmodule
34
35 module stateOutput_tb;
36 reg x,clk;
37 wire [1:0] q;
38 wire y;
39 stateOutput U(.clk(clk),.q(q),.x(x),.z(y));
40 initial begin
41 clk<=1'b0;
42 x<=1'b1;
43 #20;
44 x<=1'b0;
45 #20;
46 x<=1'b1;
47 #20;
48 x<=1'b0;
49 #20;
50 x<=1'b1;
51 #5;
52 x<=1'b0;
53 #5;
54 x<=1'b1;
55 #5;
56 x<=1'b0;
57 #5;
58 x<=1'b1;
59 end
60 always #5 clk=~clk;
```



# 4 Discussion

All of this was fairly simple just to follow your tutorial. I had no trouble figuring out the problems. The only difference might be that the siso code and output is based on 1001 instead of 1101.

