Chapter 1 Introduction to ADCs and DACs

- 1.1. Determine the number of quantization levels needed if one wanted to make a digital thermometer that was capable of measuring temperatures to within 0.1 °C accuracy over a range from -50 °C to 150 °C. What resolution of ADC would be required?
- 1.2. A digitally programmable signal generator uses a 14-bit DAC with a 10-volt reference to generate a DC output voltage. What is the smallest incremental change at the output that can occur? What is the DAC's full-scale value?
- 1.3. Determine the maximum DNL (in LSBs) for a 3-bit DAC. What is the ideal resolution of this DAC?

Digital Input	Voltage Output
000	0 V
001	0.625 V
010	1.5625 V
011	2.0 V
100	2.5 V
101	3.125 V
110	3.4375 V
111	4.375 V

- 1.4. Repeat the problem above to calculate INLs (in LSBs).
- 1.5. For a 4-bit SAR ADC, VREF for the DAC is 10 V, Vin at a moment is 6V. Show all the states of the ADC's output in a state diagram.
- 1.6. Hand-draw the register-level schematic of a 4-bit SAR register and explain the operation procedure.

- 1.7. Design a master-slave DFF with set and reset functions in LTSpice. (use the 1um technology).

 The 'models.txt' file can be found on the course website.
- 1.8. (a) Use Superposition and Thevenin's equivalent circuit theory to verify the LSB of the following R-2R DAC is $VDD/2^N$. (b) If the digital input is 10101, find the analog output use Superposition and Thevenin's equivalent circuit theory.

