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Examine Fig. 28.19a. The digital output, D, of an ideal, 3-bit ADC is plotted
versus the analog input, v,. Note the difference in the transfer curve for the ADC versus
the DAC (Fig. 28.10). The y-axis is now the digital output, and the x-axis has been
normalized to V.. Since the input signal is a continuous signal and the output is discrete,
the transfer curve of the ADC resembles that of a staircase. Another fact to observe is that
the 2" quantization levels correspond to the digital output codes 0 to 7. Thus, the
maximum output of the ADC will be 111 (2" — 1), corresponding to the value for which

’ VL;;’; > 1. Figure 28.19b corresponds to the error caused by the quantization.
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Figure 28.19 (a) Transfer curve for an ideal ADC and (b) its corresponding
quantization error.

The value of 1 LSB for this ADC can be calculated using Eq. (28.9) and is the
ideal step width (1/8) in Fig. 28.19 (versus the height for the DAC) multiplied by Vs

Therefore, assuming that V=5V,
—
1LSB=0.625V 28.17) .

Quantization Error

Since the analog input is an infinite valued quantity and the output is a discrete value, an
error will be produced as a result of the quantization. This error, known as quantization
error, Q,, is defined as the difference between the actual analog input and the value of the
output (staircase) given in voltage. It is calculated as

Qe . vIN - Vslaircase (28 18)
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where the value of the staircase output, ¥

staircase?

can be calculated by

Vstaircase =D- '@' =D-Visp (2819)

where D is the value of the digital output code and V. is the value of 1 LSB in volts, in
this case 0.625 V. We can also easily convert the value of Q, in units of LSBs. In Fig.
28.19a, O, can be generated by subtracting the value of the staircase from the dashed line.
The result can be seen in Fig. 28.19b. A sawtooth waveform is formed centered about %
LSBs. Ideally, the magnitude of O, will be no greater than one LSB and no less than 0. It
would be advantageous if the quantization error were centered about zero so that the error
would be at most +' LSBs (as opposed to +1LSB). This is easily achieved as seen in Fig.
28.20a and b. Here, the entire transfer curve is shifted to the left by 2 LSB, thus making
the codes centered around the LSB increments on the x-axis. This drawing illustrates that
at best, an ideal ADC will have quantization error of +% LSB.
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Figure 28.20 (a) Transfer curve for an ideal 3-bit ADC with (b) quantization error
centered about zero.

In shifting this curve to the left, notice that the first code transition occurs when

;—;V-F- 2 % Therefore, the range of % for the digital output corresponding to 000 is half

as wide as the ideal step width. The last code transition occurs when V%;: > % (between
6/8 and 7/8). Note that the step width corresponding to this last code transition is 1.5
times larger than the ideal width and that the quantization error extends up to 1 LSB when

72 = 1. However, the converter would be considered to be out of range once —& > 13
VreF

Vrer — 16
(halfway between 7/8 and 8/8), so the problem is moot.
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Differential Nonlinearity

Differential nonlinearity for an ADC is similar to that defined for a DAC. However, for
the ADC, DNL is the difference between the actual code width of a nonideal converter
and the ideal case. Figure 28.21 illustrates the transfer curve for a nonideal 3- bit ADC
The values for the DNL can be solved as follows:

DNL = Actual step width — Ideal step width (28.20)

Since the step widths can be converted to either volts for LSBs, DNL can be defined
using either units. The value of the ideal step is 1/8. Converting to volts, this becomes

Videalstepwidth= 3 Vrer =0.625 V=1 LSB (28.21)
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Figure 28.21 (a) Transfer curve for a nonideal 3-bit ADC used in Ex. 28.4 with
(b) quantization error illustrating differential nonlinearity.

Example 28.6
Using Fig. 28.21a, calculate the differential nonlinearity of the 3-bit ADC.
Assume that V. = 5 V. Draw the quantization error, Q,, in units of LSBs.

The DNL of the converter can be calculated by examining the step width of each
digital output code. Since the ideal step width of the 000 transition is % LSB, then
DNL, = 0. Also note that them1 to
1 LSB therefore, both DNL, and DNL, are zero. However, the remaining values
code widths are not equal to the ideal value but can be calculated as
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DNL,=1.5LSB-1LSB=0.5LSB

DNI:; 0.5LSB-1LSB=-0.5LSB

DNL,=-0.5LSB

DNL,= 0.5 LSB

DNL, = 0 LSB (since the ideal step width is 1.5 LSB wide

at this code transifion)

The overall DNL for the converter used in this illustration is +0.5 LSB. Note that
the quantization error illustrated in Fig. 28.21b is directly related to the DNL. As
DNL increases in either direction, the quantization error worsens. Each “tooth” in
the quantization error waveform should ideally be the same size. B

Missing Codes

It is of interest to note the consequences of having a DNL that is equal to -1 LSB. Figure
28.22 illustrates an ADC for which this is true. The total width of the step corresponding
to 101 is completely missing; thus, the value of DNL, is -1 LSB. Any ADC possessing a
DNL that is equal to —1 LSB is guaranteed to have a missing code. Notice that the step
width corresponding to 010 is 2 LSBs and that the value for DNL, is +1 LSB. However,
there is not a missing code corresponding to 011, since the step width of code 011
depends on the 100 transition. Therefore, an ADC having a DNL greater than +1 LSB is

not guaranteed to have a missing code, though in all probability a missing code will
occur.
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Figure 28.22 Transfer curve for a nonideal 3-bit ADC with a missing code.

Integral Nonlinearity

Integral nonlinearity (INL) is defined similarly to that for a DAC. Again, a “best-fit”
straight line is drawn through the end points of the first and last code transition, with INL
being defined as the difference between the data converter code transition points and the
straight line with all other errors set to zero.
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Example 28.7
Determine the INL for the ADC whose transfer curve is illustrated in Fig. 28.23a.
Assume that V.. =5 V. Draw the quantization error, {,, in units of LSBs.
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Figure 28.23 (a) Transfer curve of a nonideal 3-bit ADC and (b) its quantization error
illustrating INL.

By inspection, it can be seen that all of the transition points occur on the best-fit
line except for the transitions associated with code 011 and 110. Therefore,

INL,=INL, = INL,= INL,= INL,= INL,=0
The INL corresponding to the remaining codes can be calculated as
INL,= 3/8-5/16=1/16 or 0.5 LSB

Similarly, INL, can be calculated in the same manner and is found to be —0.5 LSB.
Thus, the overall INL for the converter is the maximum value of INL
corresponding to +0.5 LSB.

The INL can also be determined by inspecting the quantization error in Fig.
28.23b. Here, the INL will be the magnitude of the quantization error which lies
outside the +); LSB band of Q,. It can be seen that O, = 1 LSB, corresponding to
the point at which INL = 0.5 LSB for digital output code 011, and that Q, = 1
LSB at the output code corresponding to INL = —0.5 LSB for digital output code
110.m
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Offset and Gain Error

Offset and gain error are identical to the DAC case. Offset error occurs when there is a
difference between the value of the first code transition and the ideal value of ¥ LSBs. As
seen in Fig. 28.24a, the offset error is a constant value. Note that the quantization error
becomes ideal after the initial offset voltage is overcome. Gain error or scale Jactor
error, seen in Fig. 28.24b, is the difference in the slope of a straight line drawn through
the transfer characteristic and the slope of 1 of an ideal ADC. Causes of offset and gain
error are discussed in Ch. 29, but it is important here to understand their overall effects on
ADC ftransfer curves.
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Figure 28.24 Transfer curve illustrating (a) offset error and (b) gain error.

So far, we have examined only the DC characteristics of an ADC. However,
examining the dynamic aspects of the converter will lead to a whole new set of errors.
Sampling is inherently a dynamic process since the accuracy of the sample is dependent
on the speed of the analog signal. Many effects that occur during sampling limit the
overall performance of the converter.

Aliasing

As mentioned earlier in the chapter, the Nyquist Criterion requires that a signal be
sampled at least two times the highest frequency contained in the signal. What would
happen if this criterion were ignored and the sampling rate was actually less than that
amount? A phenomenon known as aliasing would occur.

Examine Fig. 28.25. Here, an analog signal is being sampled at a rate slower than
the Nyquist Criterion requires. As a result, it appears that a totally different signal (see
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Figure 28.25 Aliasing caused by undersampling.

example dashed line) is being sampled. The different frequency signal is an “alias” of the
original signal, and its frequency can be calculated using

Satias = Jocniat ¥ " Sogmpe (k= ...—2,-1,0,1,2,3...) (28.22)

where f, ., is the frequency of the analog signal, Jeampie 18 the sampling frequency, and £,
is the frequency of the alias signal.

lias

Aliasing can be eliminated by both sampling at higher frequencies and by filtering
the analog signal before sampling and removing any frequencies that are greater than
one-half the sampling frequency. It is good practice to filter the analog signal before
sampling to eliminate any unknown higher order frequency components or noise that
could result in aliasing.

A frequency domain analysis may further illustrate the concepts of aliasing. Figure
28.26 shows the analog signal, the sampling function (represented by a unit impulse train)
and the resulting sampled signal in both the time and frequency domains. The analog
signal in Fig. 28.26a is represented as a simple band-limited signal with center frequency,
/- This simply means that the signal is contained within the frequency range shown. In
Fig. 28.26b, the sampling function is shown in both the time and frequency domain. The
sampling function simply represents the action of sampling at discrete points in time. The
frequency domain version of the sampling function is similar to its time domain
counterpart, except that the x-axis is now represented as f = 1/7. Since each of the
impulses has a value of 1, the resulting sampled signal shown in Fig. 28.26¢ is the
impulse function multiplied by the amplitude of the analog signal at each discrete point in
time. Remembering that multiplication in the time domain is equivalent to convolution in
the frequency domain, we note that the frequency domain representation of the sampled
signal reveals that the overall signal consists of multiple versions of the band-limited
signal at multiples of the sampling frequency. ’

Note in Fig. 28.26b that as the sampling time increases, the sampling frequency
decreases and the impulses in the frequency domain become more closely spaced. This
results in 28.26d, which illustrates the aliasing as the multiple versions of the



