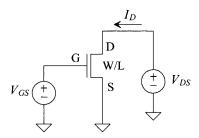
Square-Law Equations

For a triode-operating long-channel NMOS device

$$I_D = KP_n \cdot \frac{W}{L} \cdot \left| (V_{GS} - V_{THN}) V_{DS} - \frac{V_{DS}^2}{2} \right|$$

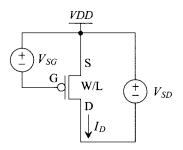
for
$$V_{GS} \ge V_{THN}$$
 and $V_{DS} \le V_{GS} - V_{THN}$


For a long-channel NMOS device operating in the saturation region:

$$I_D = \frac{KP_n}{2} \cdot \frac{W}{L} (V_{GS} - V_{THN})^2 [1 + \lambda (V_{DS} - V_{DS,sat})]$$

for
$$V_{GS} > V_{THN}$$
 and $V_{DS} \ge V_{GS} - V_{THN}$

On the border between saturation and triode:


 $V_{DS,sat} = V_{GS} - V_{THN}$ and the drain current is called $I_{D,sat}$, see Fig. 6.11

For the PMOS device equations make the following substitutions in the equations listed above

$$V_{DS} \rightarrow V_{SD}$$
, $V_{GS} \rightarrow V_{SG}$, and $V_{THN} \rightarrow V_{THP}$.

All of the voltages and currents in the PMOS and NMOS equations are **positive**. For example, for the PMOS device to conduct a drain current requires $V_{SG} > V_{THP}$. For the NMOS to conduct a drain current requires $V_{GS} > V_{THN}$.

