CASE STUDY 99

V00 O S s D s e e Y e e e e e Y O s T O
reset I |

syn_clr

—

load |

en__...

w o ——— e

CHCI N o
R C o I 2 3 4 15 16 17 0 {1 12
min_tick [Ai -ﬁﬂliiiﬂ . (77ﬁ R T
max_tick R | | |] |
I I] !
Figure 4.4 Testbench waveform.
wait (g==2);

or wait until a signal changes, such as
wait(min_tick);

or wait for an absolute time, such as
#(4xT); // wait for 4T

If an input signal is modified after these statements, we need to make sure that the input
change does not occur at the rising edge of the clock. An additional

@(negedge clk);

statement should be added when needed.
We can compile the code and perform simulation. Part of the simulated waveform is
shown in Figure 4.4.

4.5 CASE STUDY

After examining several simple circuits, we discuss the design of more sophisticated exam-
ples in this section.

4.51 LED time-multiplexing circuit

The S3 board has four seven-segment LED displays, each containing seven bars and one
small round dot. To reduce the use of FPGA’s I/O pins, the S3 board uses a time-multiplexing
sharing scheme. In this scheme, the four displays have their individual enable signals but
share eight common signals to light the segments. All signals are active low (i.e., enabled
when a signal is 0). The schematic of displaying a “3” on the rightmost LED is shown in
Figure 4.5. Note that the enable signal (i.e., an) is "1110". This configuration clearly can
enable only one display at a time. We can time-multiplex the four LED patterns by enabling
the four displays in turn, as shown in the simplified timing diagram in Figure 4.6. If the
refreshing rate of the enable signal is fast enough, the human eye cannot distinguish the
on and off intervals of the LEDs and perceives that all four displays are lit simultaneously.
This scheme reduces the number of 1/0 pins from 32 to 12 (i.e., eight LED segments plus
four enable signals) but requires a time-multiplexing circuit. Two variations of the circuit
are discussed in the following subsections.

100 REGULAR SEQUENTIAL CIRCUIT

fﬂiﬂb

i
B O O
(R P

Figure 4.5 Time-multiplexed seven-segment LED display.

wo | L
a L] .

an2 | l L_
an3 | |

dp,ab,...g :X o W m X 2 Y m3 X im0 X int)C

Figure 4.6 Timing diagram of a time-multiplexed seven-segment LED display.

CASE STUDY 101

in0 sseg
in1 an
in2
in3
disp_mux
reset
(a) Symbol
an < 00
in1 s 01
in2 < 10 sseg
in3 1" 8
8
g_next 18 q_reg
v L~ d q - q_reg [17:16]
18 18 18 2
I—Pclk
clk reset

2-to-4
I decoder 7 an

reset

(b) Block diagram

Figure 4.7 Symbol and block diagram of a time-multiplexing circuit.

Time multiplexing with LED patterns The symbol and block diagram of the time-
multiplexing circuit are shown in Figure 4.7. It takes four seven-segment LED patterns,
in3, in2, inl, and in0, and passes them to the output, sseg, in accordance with the enable
signal.

The refresh rate of the enable signal has to be fast enough to fool our eyes but should
be slow enough so that the LEDs can be turned on and off completely. The rate around the
range 1000 Hz should work properly. In our design, we use an 18-bit binary counter for
this purpose. The two MSBs are decoded to generate the enable signal and are used as the
selection signal for multiplexing. The refreshing rate of an individual bit, such as an [0],

becomes 324 Hz, which is about 800 Hz. The code is shown in Listing 4.13.

Listing 4.13 LED time-multiplexing circuit with LED patterns

module disp_mux
(
input wire clk, reset,
input [7:0] in3, in2, inl, inO,
s output reg [3:0] an, // enable, I—out—of—4 asserted low
output reg [7:0] sseg // led segments
)

// constant declaration
10 // refreshing rate around 800 Hz (50 MHz/2°16)
localparam N = 18;

102 REGULAR SEQUENTIAL CIRCUIT

// signal declaration
reg [N-1:0] q_reg;
15 wire [N-1:0] q_next;

// N—bit counter
// register
always @(posedge clk, posedge reset)
20 if (reset)
q_reg <= 0;
else
q.reg <= g_next;

25 // next—state logic
assign q_next = q_reg + 1;

// 2 MSBs of counter to control 4—to—1 multiplexing
// and to generate active—low enable signal

30 always @x
case (q_reg[N-1:N-2]1)
2’b00:
begin
an = 4’b1110;
35 sseg = in0;
end
2°b01:
begin
an = 4°’°b1101;
40 sseg = inl;
end
2°b10:
begin
an = 4’'b1011;
45 sseg = in2;
end
default:
begin
an = 4’b0111;
50 sseg = in3;
end
endcase
endmodule

We use the testing circuit in Figure 4.8 to verify operation of the LED time-multiplexing
circuit. It uses four 8-bit registers to store the LED patterns. The registers use the same
8-bit switch as input but are controlled by individual enable signals. When we press a
pushbutton, the corresponding register is enabled and the switch pattern is loaded to that
register. The code is shown in Listing 4.14.

Listing 4.14 Testing circuit for time multiplexing with LED patterns

module disp_mux_test
(

input wire clk,

25

30

CASE STUDY 103

SW d q
btn[0] en
d q
btn[1] en in0 sseq f————— sseg
in1 anf—— an
in2
in3
d q S disp_mux
btn(2] en reset
>
d q
btn[3] ————en
>
clk

Figure 4.8 LED time-multiplexing testing circuit.

input wire [3:0] btn,
input wire [7:0] sw,
output wire [3:0] an,
output wire [7:0] sseg
)

// signal declaration
reg [7:0] d3_reg, d2_reg, dl_reg, d0_reg;

// instantiate 7—seg LED display time—multiplexing module
disp_mux disp._unit
(.clk(clk), .reset(1’b0), .in0(d0_reg), .inl(dl_reg),
.in2(d2_reg), .in3(d3_reg), .an(an), .sseg(sseg));

// registers for 4 led patterns
always Q@(posedge clk)
begin
if (btnl[31)
d3_reg <= sw;
if (btn[2])
d2_reg <= sw;
if (btnl1l)
dl_reg <= sw;
if (btnl0l)
dO0_reg <= sw;
end

endmodule

104 REGULAR SEQUENTIAL CIRCUIT

hex0 00
hex : 0 hex_to_7seg
4 _10_ .
hex2 “ 10 decoder —~ sseg[6:0]
hex3 % 11 4 7
e
18
q_next q_reg 1716
v Lrld q o areg[t7:16]
18 18 2
18 |—> clk
clk reset
2-to-4
reset | decoder 7 an
4

Figure 4.9 Block diagram of a hexadecimal time-multiplexing circuit.

Time multiplexing with hexadecimal digits The most common application of a
seven-segment LED is to display a hexadecimal digit. The decoding circuit is discussed
in Section 3.9.1. To display four hexadecimal digits with the previous time-multiplexing
circuit, four decoding circuits are needed. A better alternative is first to multiplex the
hexadecimal digits and then decode the result, as shown in Figure 4.9.

This scheme requires only one decoding circuit and reduces the width of the 4-to-1
multiplexer from 8 bits to 5 bits (i.e., 4 bits for the hexadecimal digit and 1 bit for the
decimal point). The code is shown in Listing 4.15. In addition to clock and reset, the input
consists of four 4-bit hexadecimal digits, hex3, hex2, hex1, and hex0, and four decimal
points, which are grouped as one signal, dp_in.

Listing 4.15 LED time-multiplexing circuit with hexadecimal digits

module disp_hex_mux
(
input wire clk, reset,
input wire [3:0] hex3, hex2, hexl, hexO0, // hex digits
s input wire [3:0] dp_in, // 4 decimal points
output reg [3:0] an, // enable I—out—of—4 asserted low
output reg [7:0] sseg // led segments
);

10 // constant declaration
// refreshing rate around 800 Hz (50 MHz/2°16)
localparam N = 18;
// internal signal declaration
reg [N-1:0] q_reg;

15 wire [N-1:0] q_next;
reg [3:0] hex_in;
reg dp;

// N=bit counter
20 // register
always Q@(posedge clk, posedge reset)

35

40

45

55

60

65

70

if (reset)

q_reg <= 0;

else
q_reg <=

q_next;

// next—state logic

assign q_next =

q_reg + 1;

CASE STUDY

// 2 MSBs of counter to comtrol 4—to—1 multiplexing

// and to generate active—low enable signal

always @x

case (g_reglN-1:N-2])

2°b00:
begin
an = 4°b1110;
hex_in = hex0;
dp = dp_in[0];
end
2°b01:
begin
an = 4°b1101;
hex_in = hexl;
dp = dp_in[1];
end
2°b10:
begin
an = 4’b1011;
hex_in = hex2;
dp = dp_in[2];
end
default:
begin
an = 4°’b0111;
hex_in = hex3;
dp = dp_in[3];
end
endcase

// hex to seven—segment led display

always @x
begin

case (hex_in)

4°h0:

4°h1:

4°h2:

4°h3:

4°h4:

4’°h5:

4°h6:

4°h7:

4°h8:

4°h9:

4’ha:

sseg[6:0] = 7’b0000001;
sseg[6:0] = 7°b1001111;
sseg[6:0] = 7°b0010010;
sseg[6:0] = 7°b0000110;
sseg[6:0] = 7°b1001100;
sseg[6:0] = 7’b0100100;
sseg[6:0] = 7°b0100000;
sseg[6:0] = 7’b0001111;
sseg[6:0] = 7’b0000000;
sseg[6:0] = 7°b0000100;
sseg[6:0] = 7’b0001000;

105

106 REGULAR SEQUENTIAL CIRCUIT

75 4°hb: sseg[6:0] 7°b1100000;
4’hc: ssegl6:0] 7°b0110001;
4°hd: ssegl[6:0] 7°b1000010;
4°he: sseg[6:0] = 7’b0110000;
default: sseg[6:0] = 7°b0111000; // 4 hf
80 endcase
sseg[7] = dp;
end

endmodule

To verify operation of this circuit, we define the 8-bit switch as two 4-bit unsigned
numbers, add the two numbers, and show the two numbers and their sum on the four-digit
seven-segment LED display. The code is shown in Listing 4.16.

Listing 4.16 Testing circuit for time multiplexing with hexadecimal digits

module hex_mux_test

(

input wire clk,

input wire [7:0] sw,
5 output wire [3:0] an,
output wire [7:0] sseg
)

// signal declaration
10 wire [3:0] a, b;
wire [7:0] sum;

// instantiate 7—seg LED display module
disp_hex_mux disp_unit
15 (.clk(clk), .reset(1’b0),
.hex3(sum{7:4]), .hex2(sum[3:0])), .hex1(b), .hexO0(a),
.dp_in(4°b1011), .an(an), .sseg(sseg));

// adder
20 assign a sw[3:0];
assign b = sw([7:4];
assign sum = {4°b0,a} + {4°b0,b};

endmodule

Simulation consideration Many sequential circuit examples in the book operate at a
relatively slow rate, as does the enable pulse of the LED time-multiplexing circuit. This
can be done by generating a single-clock enable tick from a counter. An 18-bit counter is
used in this circuit:

localparam N = 18;
reg [N-1:0] qg_reg;
wire [N-1:0] q_next;

assign q_next = q_reg + 1;

Because of the counter’s size, simulating this type of circuit consumes a significant amount
of computation time (i.e., 2'® clock cycles for one iteration). Since our main interest is in

CASE STUDY 107

the multiplexing part of the code, most simulation time is wasted. It is more efficient to use
a smaller counter in simulation. We can do this by modifying the constant statement

localparam N = 4;

when constructing the testbench. This requires only 24 clock cycles for one iteration and
allows us to better exercise and observe the key operations.

Instead of using a constant and modifying code between simulation and synthesis, an
alternative is to define N as a parameter. During instantiation, we can assign different values
for simulation and synthesis.

452 Stopwatch

We consider the design of a stopwatch in this subsection. The watch displays the time in
three decimal digits, and counts from 00.0 to 99.9 seconds and wraps around. It contains
a synchronous clear signal, clr, which returns the count to 00.0, and an enable signal,
go, which enables and suspends the counting. This design is basically a BCD (binary-
coded decimal) counter, which counts in BCD format. In this format, a decimal number is
represented by a sequence of 4-bit BCD digits. For example, 1391 is represented as "0001
0011 1001" and the next number in sequence is 1404, which is represented as "0001 0100
0000".

Since the S3 board has a 50-MHz clock, we first need a mod-5,000,000 counter that
generates a one-clock-cycle tick every 0.1 second. The tick is then used to enable counting
of the three-digit BCD counter.

Design 1 Our first design of the BCD counter uses a cascading structure of three decade
(i.e., mod-10) counters, representing counts of 0.1, 1, and 10 seconds, respectively. The
decade counter has an enable signal and generates a one-clock-cycle tick when it reaches 9.
We can use these signals to “hook” the three counters. For example, the 10-second counter
is enabled only when the enable tick of the mod-5,000,000 counter is asserted and both the
0.1- and 1-second counters are 9. The code is shown in Listing 4.17.

Listing 4.17 Cascading description for a stopwatch

module stop_watch_cascade
(
input wire clk,
input wire go, clr,
5 output wire [3:0] 42, d1, do
);

// declaration
localparam DVSR = 5000000;

10 reg [22:0] ms_reg;
wire [22:0] ms_next;
reg [3:0] d2_reg, dl_reg, dO_reg;
wire [3:0] d2_next, dl_next, dO_next;
wire di_en, d2_en, dO_en;

15 wire ms_tick, d0_tick, di_tick;

// body
// register
always @(posedge clk)

108 REGULAR SEQUENTIAL CIRCUIT

20 begin
ms_reg <= ms_next;
d2_reg <= d2_next;
dl_reg <= dl_next;
dO_reg <= dO_mext;
28 end

// next—state logic
// 0.1 sec tick generator: mod—5000000

assign ms_mext = (clr || (ms_reg==DVSR && go)) 7 4’b0
30 (go) ? ms_reg + 1
ms_reg;

assign ms_tick = (ms_reg==DVSR) 7 1’bl : 1°Db0;
// 0.1 sec counter

assign dO_en = ms_tick;
3 assign dO_next = (clr || (dO_en && dO_reg==9)) 7 4’b0O
(dO_en) ? dO_reg + 1

d0_reg;
assign dO_tick = (dO_reg==9) ? 1’°bl : 1°b0;
// 1 sec counter

a0 assign dil_en = ms_tick & dO_tick;
assign dl_next = (clr |] (di_en && d0_reg==9)) 7 4’°b0
(dl_en) ? dil_reg + 1
di_reg;

assign di_tick = (dl_reg==9) 7 1’bl : 1’b0;
45

// 10 sec counter

assign d2_en = ms_tick & dO_tick & dil_tick;

assign d2_next = (clr || (d2_en && d2_reg==9)) 7 4°b0
(d2_en) 7 d2_reg + 1
50 d2_reg;

// output logic
assign d0 = dO_reg;

assign d1 = di_reg;
55 assign d2 = d2_reg;
endmodule

Note that all registers are controlied by the same clock signal. This example illustrates
how to use a one-clock-cycle enable tick to maintain synchronicity. An inferior approach
is to use the output of the lower counter as the clock signal for the next stage. Although it
may appear to be simpler, it violates the synchronous design principle and is a very poor
practice.

Design Il An alternative for the three-digit BCD counter is to describe the entire structure
in a nested if statement. The nested conditions indicate that the counter reaches .9, 9.9, and
99.9 seconds. The code is shown in Listing 4.18.

Listing 4.18 Nested if-statement description for a stopwatch

module stop_watch_if
(

input wire clk,

20

40

45

CASE STUDY

input wire go, clr,
output wire [3:0] 42, d1, doO
)

// declaration

localparam DVSR = 5000000;

reg [22:0] ms_reg;

wire [22:0] ms_next;

reg [3:0] d2_reg, dli_reg, dO_reg;
reg [3:0] d2_next, dl_next, dO_next;
wire ms_tick;

// body

// register

always @(posedge clk)

begin
ms_reg <= ms_next;
d2_reg <= d2_next;
di_reg <= di_mext;
dO0_reg <= dO_next;

end

// next—state logic
// 0.1 sec tick generator: mod—5000000
assign ms_next = (clr || (ms_reg==DVSR && go)) 7 4’b0
(go) ? ms_reg + 1
ms_reg;

assign ms_tick = (ms_reg==DVSR) 7 1’bl : 1°b0;
// 3-digit bed counter
always @x*
begin

// default: keep the previous value

dO0_next = dO_reg;

di_next = dl_reg;

d2_next = d2_reg;

if (clr)
begin
dO_next = 4°b0;
dl_next = 4’b0;
d2_next = 4°’b0;
end
else if (ms_tick)
if (dO_reg '= 9)
dO_next = dO_reg + 1;
else // reach XX9
begin
d0O_next = 4’b0;
if (di_reg != 9)
dl_next = di_reg + 1;
else // reach X99
begin

dl_next = 4°’b0;
if (d2_reg !'= 9)

109

110 REGULAR SEQUENTIAL CIRCUIT

d2_next = d2_reg + 1;
else // reach 999
d2_next = 4°b0;

0 end
end

end
// output logic

65 assign d0 = dO_reg;
assign di1 = dil_reg;
assign d2 = d2_reg;

endmodule

Verification circuit

To verify operation of the stopwatch, we can combine it with the

previous hexadecimal LED time-multiplexing circuit to display the output of the watch.
The code is shown in Listing 4.19. Note that the first digit of the LED is assigned to 0 and
the go and clr signals are mapped to two pushbuttons of the S3 board.

Listing 4.19 Testing circuit for a stopwatch

module stop_watch_test

(

input wire clk,
input wire [1:0] btn,
5 output wire [3:0] an,

) ’

output wire [7:0] sseg

// signal declaration

10 wire {3:0]

d2, di, dO;

// instantiate 7—seg LED display module
disp_hex_mux disp_unit
(.clk(clk), .reset(1’°b0),
5 .hex3(4°b0), .hex2(d2), .hex1(dl), .hex0(d0),
.dp_in(4°b1101), .an(an), .sseg(sseg));

// instantiate stopwatch
stop_watch_if counter_unit
2 (.clk(clk), .go(btn[1]), .clr(btn[0]),
.d2(d2), .d1(d41), .d40(d0));

endmodule

453 FIFO buffer

A FIFO (first-in-first-out) buffer is an “elastic” storage between two subsystems, as shown
in the conceptual diagram of Figure 4.10. It has two control signals, wr and rd, for write
and read operations. When wr is asserted, the input data is written into the buffer. The
read operation is somewhat misleading. The head of the FIFO buffer is normally always
available and thus can be read at any time. The rd signal actually acts like a “remove”

CASE STUDY 11

FIFO buffer

data written data read
into FIFO from FIFO

Figure 4.10 Conceptual diagram of a FIFO buffer.

signal. When it is asserted, the first item (i.e., head) of the FIFO buffer is removed and the
next item becomes available.

FIFO buffer is a critical component in many applications and the optimized implemen-
tation can be quite complex. In this subsection, we introduce a simple, genuine circular-
queue-based design. More efficient, device-specific implementation can be found in the
Xilinx literature.

Circular-queue-based implementation One way to implement a FIFO buffer is to
add a control circuit to a register file. The registers in the register file are arranged as a
circular queue with two pointers. The write pointer points to the head of the queue, and the
read pointer points to the tail of the queue. The pointer advances one position for each write
or read operation. The operation of an eight-word circular queue is shown in Figure 4.11.

A FIFO buffer usually contains two status signals, full and empty, to indicate that the
FIFO is full (i.e., cannot be written) and empty (i.e., cannot be read), respectively. One of
the two conditions occurs when the read pointer is equal to the write pointer, as shown in
Figure 4.11(a), (f), and (i). The most difficult design task of the controller is to derive a
mechanism to distinguish the two conditions. One scheme is to use two FFs to keep track
of the empty and full statuses. The FFs are set to 1 and 0 during system initialization and
then modified in each clock cycle according to the values of the wr and rd signals. The
code is shown in Listing 4.20.

Listing 4.20 FIFO buffer

module fifo
#(
parameter B=8, // number of bits in a word
W=4 // number of address bits

input wire clk, reset,

input wire rd, vr,

input wire [B-1:0] w_data,
10 output wire empty, full,
output wire [B-1:0] r_data
);

//signal declaration
15 reg [B-1:0] array_reg [2**W-1:01; // register array
reg [W-1:0] w_ptr_reg, w_ptr_next, w_ptr_succ;
reg [W-1:0] r_ptr_reg, r_ptr_next, r_ptr_succ;
reg full_reg, empty_reg, full_next, empty_next;

112 REGULAR SEQUENTIAL CIRCUIT

f i "
ﬁﬂ” ‘ﬁi’

(a). initial (empty) (b). after a write (c) 3 more writes
wr ptr
T N N
‘@ :
&
wr pir —/
(d). after a read (€). 4 more writes (£). 1 more write (full)
| f “ p' “ pir
O ﬁp Q.ﬂ
rd ptr
(g). 2 reads (h). 5 more reads (i). 1 more read (empty)

Figure 4.11 FIFO buffer based on a circular queue.

20

10

45

60

65

CASE STUDY

wire wr_en;

// body
// register file write operation
always @(posedge clk)
if (wr_en)
array_reg[w_ptr_regl <= w_data;
// register file read operation

assign r_data = array_reglr_ptr_regl;
// write enabled only when FIFO is not full
assign wr_en = wr & “full_reg;

/! fifo control logic
// register for read and write pointers
always @(posedge clk, posedge reset)
if (reset)
begin
w_ptr_reg <= 0;
r_ptr_reg <= 0;
full_reg <= 1’°b0;
empty_reg <= 1’bl;
end
else
begin
w_ptr_reg <= w_ptr_next;
r_ptr_reg <= r_ptr_next;
full_reg <= full_next;
empty_reg <= empty_next;
end

// next—state logic for read and write pointers
always @x

begin
// successive pointer values
W_ptr_succ = w_ptr_reg + 1;
r_ptr_succ = r_ptr_reg + 1;
// default: keep old values
w_ptr_next = w_ptr_reg;
r_ptr_next = r_ptr_reg;

full_next = full_reg;
empty_next = empty_reg;
case ({wr, rd})
/7 2°600: no op
2°b01: // read
if (Tempty_reg) // not empty
begin
r_ptr_mext = r_ptr_succ;
full_next = 1’b0;
if (r_ptr_succ==w_ptr_reg)
empty_next = 1°bl;
end
2°b10: // write
if ("full_reg) // not full

113

114 REGULAR SEQUENTIAL CIRCUIT

begin
w_ptr_next = w_ptr_succ;
empty_next = 1’°b0;
75 if (w_ptr_succ==r_ptr_reg)
full_next = 1’bi;
end
2°b11: // write and read
begin
80 w_ptr_next = w_ptr_succ;
r_ptr_mnext = r_ptr_succ;
end
endcase
end
85
// output

assign full = full_reg;
assign empty = empty_reg;

% endmodule

The code is divided into a register file and a FIFO controller. The controller consists of
two pointers and two status FFs. Its next-state logic examines the wr and rd signals and takes
actions accordingly. For example, let us consider the "10" case, which implies that only a
write operation occurs. The status FF is checked first to ensure that the buffer is not full.
If this condition is met, we advance the write pointer by one position and clear the empty
status FF. Storing one extra word to the buffer may make it full. This happens if the new
write pointer “catches” the read pointer, which is expressed by the w_ptr_succ==r_ptr_reg
expression.

Verification circuit The verification circuit examines the operation of a 24-by-3 FIFO
buffer. We use three switches to generate the input data and use two buttons for the wr
and rd signals. The 3-bit readout and the full and empty status signals are displayed
in five discrete LEDs. Because of bounces of the mechanical contact, a debouncing cir-
cuit is needed to generate a clean one-clock-cycle tick. The debouncing module, named
debounce, is discussed in Section 6.2.1 but for now can be treated as a predesigned mod-
ule. The original button inputs are btn[0] and btn[1], and the debounced signals are
db_btn[0] and db_btn[1]. The code is shown in Listing 4.21.

Listing 4.21 Testing circuit for a FIFO buffer

module fifo_test

(

input wire clk, reset,

input wire [1:0] btn,
5 input wire [2:0] sw,
output wire [7:0] led
);

// signal declaration
10 wire [1:0] db_btn;

// debounce circuit for bitn[0]
debounce btn_db_unitO

BIBLIOGRAPHIC NOTES 115

(.clk(clk), .reset(reset), .sw(btn[0]),
15 .db_level (), .db_tick(db_btnl[0]));
// debounce circuit for btn[l]
debounce btn_db_unitl
(.clk(clk), .reset(reset), .sw(btn[1]),
.db_level (), .db_tick(db_btn[1]));
20 // instantiate a 2°2—by—3 fifo
fifo #(.B(3), .W(2)) fifo_unit
(.clk(clk), .reset(reset),
.rd(db_btn{0]), .wr(db_btnl[1]), .w_data(sw),
.r_data(led[2:0]), .full(led([71), .empty(led[61));
2 // disable unused leds
assign led([5:3] = 3’°b000;

endmodule

4.6 BIBLIOGRAPHIC NOTES

The bibliographic information for this chapter is similar to that for Chapter 3.

4.7 SUGGESTED EXPERIMENTS

4.7.1 Programmable square-wave generator

A programmable square-wave generator is a circuit that can generate a square wave with
variable on (i.e., logic 1) and off (i.e., logic 0) intervals. The durations of the intervals are
specified by two 4-bit control signals, m and n, which are interpreted as unsigned integers.
The on and off intervals are m*100 ns and nx100 ns, respectively (recall that the period of
the S3 onboard oscillator is 20 ns). Design a programmable square-wave generator circuit.
The circuit should be completely synchronous. We need a logic analyzer or oscilloscope
to verify its operation.

4.7.2 PWM and LED dimmer

The duty cycle of a square wave is defined as the percentage of the on interval (i.e., logic 1)
in a period. A PWM (pulse width modulation) circuit can generate an output with variable
duty cycles. For a PWM with 4-bit resolution, a 4-bit control signal, w, specifies the duty
cycle. The w signal is interpreted as an unsigned integer and the duty cycle is —1%.

1. Design a PWM circuit with 4-bit resolution and verify its operation using a logic
analyzer or oscilloscope.

2. Modify the LED time-multiplexing circuit to include the PWM circuit for the an
signal. The PWM circuit specifies the percentage of time that the LED display is
on. We can control the perceived brightness by changing the duty cycle. Verify the
circuit’s operation by observing 1 bit of an on a logic analyzer or oscilloscope.

3. Replace the LED time-multiplexing circuit of Listing 4.19 with the new design and
use the lower 4 bits of the 8-bit switch to control the duty cycle. Verify operation of
the circuit. It may be necessary to go to a dark area to see the effect of dimming.

116 REGULAR SEQUENTIAL CIRCUIT

)
]
Il
&
Il
J
1l

- “O0DOoO“OO00D€

Figure 4.12 Pattern for Experiment 4.7.3.

aTalale anoo
=2 o000 ™ O |

Figure 4.13 Pattern for Experiment 4.7.4.

4.7.3 Rotating square circuit

In a seven-segment LED display, a square pattern can be created by enabling the a, b, f,
and g segments or the c, d, e, and g segments. We want to design a circuit that circulates
the square patterns in the four-digit seven-segment LED display. The clockwise circulating
pattern is shown in Figure 4.12. The circuit should have an input, en, which enables or
pauses the circulation, and an input, cw, which specifies the direction (i.e., clockwise or
counterclockwise) of the circulation.

Design the circuit and verify its operation on the prototyping board. Make sure that the
circulation rate is slow enough for visual inspection.

4.7.4 Heartbeat circuit

We want to create a “heartbeat” for the prototyping board. It repeats the simple pattern in
the four-digit seven-segment display, as shown in Figure 4.13, at a rate of 72 Hz. Design
the circuit and verify its operation on the prototyping board.

4.7.5 Rotating LED banner circuit

The prototyping board has a four-digit seven-segment LED display, and thus only four
symbols can be displayed at a time. We can show more information if the data is ro-
tated and moved continuously. For example, assume that the message is 10 digits (i.e.,
“0123456789”). The display can show the message as “0123”, “1234”, “2345”, ...,
“67897, “7890”, ..., “0123”. The circuit should have an input, en, which enables or
pauses the rotation, and an input, dir, which specifies the direction (i.e., rotate left or
right).

Design the circuit and verify its operation on the prototyping board. Make sure that the
rotation rate is slow enough for visual inspection.

4.7.6 Enhanced stopwatch

Modify the stopwatch with the following extensions:

SUGGESTED EXPERIMENTS 117

e Add an additional signal, up, to control the direction of counting. The stopwatch
counts up when the up signal is asserted and counts down otherwise.

e Add a minute digit to the display. The LED display format should be like M.SS.D,
where D represents 0.1 second and its range is between 0 and 9, SS represents seconds
and its range is between 00 and 59, and M represents minutes and its range is between 0
and 9.

Design the new stopwatch and verify its operation with a testing circuit.

4.7.7 Stack

A stack is a last-in-first-out buffer in which the last stored data is retrieved first. Storing a
data word to a stack is known as a push operation, and retrieving a data word from a stack
is known as a pop operation. The I/O signals of a stack are similar to those of a FIFO buffer
except that we generally use the push and pop signals in place of the wr and rd signals.
Design a stack using a register file and verify its operation with a testing circuit similar to
the one in Listing 4.21.

