transmitter and receiver modules. The transmitter module will be basically a shift
register that loads parallel data and shifts it in a specific rate through Tx pin of the
device. The receiver module will convert the received serial data through rx pin into
parallel form to be processed by the receiver. Before dealing with HDL descriptions,
let’s first focus on the working principles of UART.

12.1.1 Working Principles of UART

To use a UART, we should understand how it works. Therefore, we introduce data
format, timing, transmission, and reception operations in this section. These will help
us forming HDL descriptions in the following section.

12.1.1.1 Data Format

Data is transmitted in terms of packages in the UART. Data framing of a UART
package begins with a start bit, followed by seven to eight data bits optionally attached
by a parity bit (explained in Sec. 8.6), and concluded by one or two stop bits. This
setup can be seen in Fig. 12.1.

—»' Dt e

width

FIGURE 12.1 Data framing of a UART package with eight-bit data.

12.1.1.2 Timing

Although the UART works in asynchronous manner, the transmitter and receiver
should have same timing values to transmit and receive data. In other words, the data
can be transmitted in asynchronous manner. However, as the transmission starts, the
receiver should know the duration of each pulse in the UART package. This is set by
the baud rate which determines the timing. The baud rate is denoted by bits per second
(bps). For example, a 2400-bps indicates a 416-us bit width (or period) in the UART
transmission.

12.1.1.3 Transmission Operation

We can explain the transmission operation in the UART as a state machine. We will
explain this state machine in detail in Sec. 12.1.2. Here, let’s briefly summarize it. The
Tx pin should be at logic level 1 when the transmitter 1s in idle mode. Once
transmission starts, a falling edge is created on the data transmit line which wakes up
the receiver. Afterward, the clock is set according to the baud rate and all bits are sent
one by one in every clock cycle in the transmitter side. The receiver should have the
same baud rate for receiving transmitted bits sequentially. As the transmit operation
finalizes, the Tx pin should be set to logic level 1 for one or two bit widths to inform



the receiver that the transmission is done. These are also called stop bit(s). The number
of stop bits and usage of parity bit should also be predetermined so that the transmitter
and receiver have same settings.

12.1.1.4 Reception Operation

We can explain the reception operation in the UART as another state machine.
Although we will explain this state machine in Sec. 12.1.2, let’s briefly summarize it
here. The receiver will be in ready state initially. When a falling edge signal (start bit)
comes to Rx pin, it starts receiving data bits sequentially. To do so, the receiver should
have an internal timer with the predetermined baud rate as in the transmitter. After
receiving start bit, the timer waits for a certain time to sample the first data bit. This
offset allows starting the sampling process in the middle of the first data pulse. Note
that although data is sent as logic levels 1 and 0 by the transmitter, these are converted
to analog pulse signals. Hence, the sampling operation converts the received analog
signal to logic level O or 1 again. Afterward, we perform the sampling operation at
each successive time period to recover data bits. As all bits are received this way, the
receiver checks the parity bit within the received data (if the protocol consists one).
When stop bit(s) is received, the receiver turns back to ready state waiting to receive
the next data packet.

12.1.2 UART in Verilog

We can describe the transmit and receive operations as two separate modules in
Verilog. Let’s start with the transmitter module.

12.1.2.1 The Transmitter Module

The Verilog description of the transmitter module is presented in Listing 12.1. This
module has three inputs as send, data, and c1k. send is used to trigger starting a
transmit operation. data carries data to be transmitted. c1x 1s used to enter the 100-
MHz clock of the FPGA board (Basys3 or Arty) to the module. The transmitter
module has two outputs as ready and tx. When ready is at logic level 1, this indicates
that the module is ready to transmit data. Output tx should be directly connected to Tx
pin of the device.

The working principles of the transmitter module (as a state machine) are as
follows. Within the module, the baud rate is defined as a parameter and set to 9600 bps
by default. Here, baud timer calculates the number of clock cycles needed for a
particular baud rate by dividing the main clock frequency to the baud rate. The
transmitter module has three states as rRpy, .oAD BIT, and SEND BIT. RDY state indicates
that the module is ready to send next data package. When in the L.oap B1T state, the
data is loaded to tx output. Finally, senp B1T state indicates that the data is being
transmitted. Initial state of the module is set as rpoy. Hence, 1t waits for the send
trigger. When send i1s set to logic level 1, the module loads data with a leading zero
and a trailing one to txpata. Afterward, the module switches to Loap BIT state. Here,



the first bit to be transmitted (LSB in our configuration) is loaded to txBit. Then, the
module waits for bit index max clock cycles in senD BIT state. Then, it switches
back to Loap BIT state to load the next bit to be transmitted. This operation is repeated
until the last stop bit is transmitted. At the end of the transmission operation, the state
is set as rDY. Hence, the transmitter module starts waiting for the next send trigger. In
this module, txBit 1s wired to tx and ready 1s set as a conditional assignment such
that when state equals to rDv, it 1s at logic level 1, otherwise 0.

12.1.2.2 The Receiver Module

The Verilog description of the receiver module is presented in Listing 12.2. The
module has two inputs as c1k and rx. c1k 1s used to enter the 100-MHz clock of the
FPGA board (Basys3 or Arty) to the module as in the transmitter module. rx should be
directly connected to rx pin of the device. Through it, the receiver module listens for a
possible incoming package. The receiver module has four outputs as data, parity,
ready, and error. data represents the received data. parity shows the received parity
bit. ready indicates that the receive operation is complete. Finally, error shows if the
data package is received with or without error.

The working principles of the receiver module (as a state machine) are as follows.
Within the module, the baud rate is defined as a parameter and set to 9600 bps similar
to the transmitter module. As in the transmitter module, baud timer calculates the
number of clock cycles needed for a particular baud rate by dividing the main clock
frequency to baud rate. The receiver module has five states as RDY, START, RECEIVE,
waIT, and cHECK. The state machine starts initially at Ry state, which indicates that the
module is ready to receive the next data package. Hence, it listens to the rx pin
through rx at every rising edge of the clock. When rx goes to logic level 0, the state
machine goes to sTART. There, it waits for half of the baud timer period where it ends
up in the middle of the start signal. First data bit will be ready to be read after waiting
for baud timer period. WwATT state acts as a delay station in which the receiver waits for
baud timer period. Then, it returns to RECEIVE state unless ready is at logic level 1. In
RECETIVE state, the incoming data is sampled. Then, bitIndex is incremented by one
and checked whether it has reached the maximum value (eight for our case).

Listing 12.1 Verilog Description of the UART Transmitter Module



module UART tx ctrl(ready,uart_ tx, send,data,clk) ;
input send, clk;
input [7:0] data;

output ready, uart_ tx;

parameter baud = 9600;
parameter bit index max = 10;

localparam [31:0] baud timer = 100000000/baud;

localparam RDY = 2'b00, LOAD BIT = 2'b01, SEND BIT = 2'bl0;
reg [1:0] state = RDY;

reg [31:0] timer = 0;

reg [9:0] txData;

reg [2:0] bitIndex;

reg txBit=1'bl;

always @ (posedge clk)

case (state)

RDY :
begin
if (send)
begin
txData <= {1'bl,data,l1'b0};
state <= LOAD BIT;
end
timer <= 14'b0;
bitIndex <= 0;
txBit <= 1'bl;
end
LOAD BIT:
begin
state <= SEND_BIT;
bitIndex <= bitIndex + 1'bl;
txBit <= txData[bitIndex];
end
SEND BIT:
if (timer == baud timer)
begin
timer <= 14'b0;
if (bitIndex == bit_index max)
state <= RDY;
else state <= LOAD BIT;
end
else timer <= timer + 1'bl;
default:
state <= RDY;
endcase

assign uart tx = txBit;
assign ready = (state == RDY);
endmodule




Listing 12.2 Verilog Description of the UART Receiver Module



module UART rx ctrl(clk,rx,data,parity,ready, error);
input clk, rx;

output reg [7:0] data;

output reg parity;

output reg ready=0;

output reg error=0;

parameter baud=9600;

localparam RDY=3'b000, START=3'b001, RECEIVE=3'b010, WAIT=3'b01l1,
CHECK=3'b100;

reg [2:0] state = RDY;

localparam [31:0] baud timer = 100000000/baud;
reg [31:0] timer = 32'b0;

reg [3:0] bitIndex = 3'b0;

reg [8:0] rxdata;

always @ (posedge clk)

case (state)

RDY :
if (rx == 1'b0)
begin
state <= START;
bitIndex <= 3'b0;
end
START :
if (timer == baud timer/2)
begin
state <= WAIT;
timer <= 14'b0;
error <= 1'b0;
ready <= 1'b0;
end
else timer <= timer + 1'bl;
WATT:
if (timer == baud timer)
begin
timer <= 14'b0;
if (ready) state <= RDY;
else state <= RECEIVE;
end
else timer <= timer + 1'bl;
RECEIVE:
begin

rxdata [bitIndex] <= rx;

bitIndex <= bitIndex + 1'bl;

if (bitIndex == 4'd8) state <= CHECK;
else state <= WAIT;

end



CHECK:
if (“rxdata[7:0] == rxdatal8])
begin
ready <= 1'bl;
state <= WAIT;
data <= rxdatal[7:0];
parity <= rxdatal[8];
end
else
begin
ready <= 1'bl;
data[7:0] <= 8'bx;
error <= 1'bl;
state <= RDY;
end

endcase

endmodule

Since we have eight data bits and a parity bit, the state machine has to switch to caeck
state after all bits are received. Even parity check is performed in cHeck state. If the
received data package is consistent with parity bit, then ready is set to logic level 1
and the next state is set to wa1T. Received data and parity values in rxdata are written
to data and parity outputs. If the parity check fails, then error and ready go to logic
level 1. data 1s filled with logic level 1. Then, the reception operation ends. The
receiver turns back to rpy state waiting to receive the next data package.

12.1.3 UART in VHDL

As in Verilog, we can describe the transmit and receive operations in two separate
modules in VHDL. Let’s start with the transmitter module.

12.1.3.1 The Transmitter Module

The VHDL description of the transmitter module is presented in Listing 12.3. In this
description, we tried to keep the input, output definitions, and state names the same as
in Listing 12.1. Hence, the reader can associate the working principles of the
corresponding Verilog description with the VHDL description here.

12.1.3.2 The Receiver Module

We provide the VHDL description of the receiver module in Listing 12.4. Again, this
module has the same working principles as its Verilog version in Listing 12.1.

12.1.4 UART Applications

The UART needs an RS-232 port for communication. Unfortunately, Basys3 and Arty
boards do not have such a port. However, they share the micro USB port for the
UART communication as mentioned in Chap. 3. To run UART applications in this



